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Where are we?

Last Lecture

We saw how to treat the semantics of concurrent programs and
the properties they should satisfy.

This Lecture

We will give a syntactic way to specify properties (Temporal Logic)
and introduce one of two methods we will cover to show properties
hold (Model Checking) using the famous Critical Section problem.
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Logic

We typically state our requirements with a logic.

Definition

A logic is a formal language designed to express logical reasoning.
Like any formal language, logics have a syntax and semantics.

Example (Propositional Logic Syntax)

A set of atomic propositions P = {a, b, c , . . . }
An inductively defined set of formulae:

Each p ∈ P is a formula.
If P and Q are formulae, then P ∧ Q is a formula.
If P is a formula, then ¬P is a formula.

(Other connectives are just sugar for these, so we omit them)
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Semantics

Semantics are a mathematical representation of the meaning of a
piece of syntax. We will use models to give semantics to logic.

Example (Propositional Logic Semantics)

A model for propositional logic is a valuation V ⊆ P, a set of
“true” atomic propositions. We can extend a valuation over an
entire formula, giving us a satisfaction relation:

V |= p ⇔ p ∈ V
V |= ϕ ∧ ψ ⇔ V |= ϕ and V |= ψ
V |= ¬ϕ ⇔ V 6|= ϕ

We read V |= ϕ as V “satisfies” ϕ.
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LTL

Linear temporal logic (LTL) is a logic designed to describe linear
time properties.

Linear temporal logic syntax

We have normal propositional operators:

p ∈ P is an LTL formula.

If ϕ,ψ are LTL formulae, then ϕ ∧ ψ is an LTL formula.

If ϕ is an LTL formula, ¬ϕ is an LTL formula.

We also have modal or temporal operators:

If ϕ is an LTL formula, then ◦ ϕ is an LTL formula.

If ϕ, ψ are LTL formulae, then ϕ U ψ is an LTL formula.
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LTL Semantics in Pictures

σ

∅ {♠} {♥} {♥} {♥} {♠}
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LTL Semantics
Let σ = σ0σ1σ2σ3σ4σ5 . . . be a behaviour. Then define notation:

σ|0 = σ
σ|1 = σ1σ2σ3σ4σ5 . . .
σ|n+1 = (σ|1)|n

Semantics

The models of LTL are behaviours. For atomic propositions, we
just look at the first state. We often identify states with the set of
atomic propositions they satisfy.

σ |= p ⇔ p ∈ σ0
σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ
σ |= ¬ϕ ⇔ σ 6|= ϕ
σ |= ◦ ϕ ⇔ σ|1 |= ϕ
σ |= ϕ U ψ ⇔ There exists an i such that σ|i |= ψ

and for all j < i , σ|j |= ϕ

We say P |= ϕ iff ∀σ ∈ JPK. σ |= ϕ.
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Derived Operators

The operator 3 ϕ (“finally” or “eventually”) says that ϕ will be
true at some point.

The operator 2 ϕ (“globally” or “always”) says that ϕ is always
true from now on.

Exercise

Give the semantics of 2 and 3.

Define 2 and 3 in terms of other operators.
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More Exercises

Let ρ be this behaviour:

♥ ♠ ♥ ♥♠ ♥♠ ♥♠ · · ·

ρ |= ♥?

ρ |= ♠?

ρ |= ◦ ♠?

ρ |= 3 ♥?

ρ|3 |= 3 (♥ ∧ ¬♠)?

ρ |= 32 (♥ ∧ ♠)?

ρ |= 2 (♥ U ♠)?

More Derived Operators

Define “Infinitely Often” in LTL.

Define “Almost Globally” in LTL
(always true from some point
onwards).
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Possible Futures

q0 q1 q3

q2

start

stop

terminate

suspendresume

start

stop

terminate

suspendresume
stopped

running

terminated

suspended

We can see that it is always possible for a run to move to the
terminated state. How do we express this in LTL?

We can’t! — it
is a branching time property.

Branching Time

Dealing with branching time properties requires a different logic
called CTL (Computation Tree Logic). Learn about it in
COMP3153/9153 or COMP6752.
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A counting argument for mechanical aids

How many scenarios are there for a program with n finite processes
consisting of m atomic actions each?

(nm)!

m!n

n = 2 3 4 5 6

m = 2 6 90 2520 113400 222.8

3 20 1680 218.4 227.3 236.9

4 70 34650 225.9 238.1 251.5

5 252 219.5 233.4 249.1 266.2

6 924 224.0 241.0 260.2 281.1

So, for 6 processes consisting of 6 sequential atomic actions each,
that’s merely 2 670 177 736 637 149 247 308 800 scenarios.
Do come back when you’re done testing!
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Sobering Conclusion

For any realistic concurrent program, it is infeasible to test all
possible scenarios.

We need to apply smarter techniques than brute-force testing to
establish properties of concurrent programs.
Formal methods let us reason about programs, or, if that is too
hard, about abstractions of programs.
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Industrially applicable formal methods

To verify that program P has property ϕ (i.e. P |= ϕ), we can use:

model checking — exhaustively searching through (an
efficient representation of) P’s state space to find a
counterexample to ϕ

theorem proving — construct a (formal) proof of ϕ

To be relevant in practice, these techniques must be supported by
tools.
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Model Checking

Pros: easy to use push-button technology; instructive
counter examples (error traces) help debugging

Cons: state (space) explosion problem

Question

Where can I learn more about model checking?

Answer

COMP3153/9153 Algorithmic Verification (should run in T2)
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(Interactive) Theorem Proving

Pros: no (theoretical) limits on state spaces

Cons: requires expert users (e.g. skilled computer scientists,
mathematicians, or logicians) to hand-crank through
proofs

Question

Where can I learn more about interactive theorem proving?

Answer

COMP4161 Advanced Verification (should run in T3)
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SPIN

A model checker for concurrent systems with a lot of useful
features and support for LTL model checking.

http://www.spinroot.com

Programs are modelled in the Promela language.
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Promela in brief
A kind of weird hybrid of C and Guarded Command Language.

Models consist of multiple processes which may be
non-deterministic, and may include guards.

Supports structured control using special if and do blocks, as
well as goto.

Variables are either global or process-local. No other scopes
exist.

Variables can be of several types: bit, byte, int and so on,
as well as channels.

Enumerations can be approximated with mtype keyword.

Correctness claims can be expressed in many different ways.

Warning

Variables of non-fixed size like int are of machine determined size,
like C.
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Example 1: Hello World

Johannes will demonstrate the basics of proctype and run using
some simple examples.

Take-away

You can use SPIN to randomly simulate Promela programs as well
as model check them.
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Example 2: Counters

Johannes will demonstrate a program that exhibits
non-deterministic behaviour due to scheduling.

Explicit non-determinism

You can also add explicit non-determinism using if and do blocks:

if

:: (n % 2 != 0) -> n = 1;

:: (n >= 0) -> n = n - 2;

:: (n % 3 == 0) -> n = 3;

:: else -> skip;

fi

What would happen without the else line?
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Guards

The arrows in the previous slide are just sugar for semicolons:

if

:: (n % 2 != 0); n = 1;

:: (n >= 0); n = n - 2;

:: (n % 3 == 0); n = 3;

fi

A boolean expression by itself forms a guard. Execution can only
progress past a guard if the boolean expression evaluates to true
(non-zero).
If the entire system cannot make progress, that is called deadlock.
SPIN can detect deadlock in Promela programs.
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mtype and Looping

mtype = {RED, YELLOW, GREEN};

active proctype TrafficLight() {

mtype state = GREEN;

do

:: (state == GREEN) -> state = YELLOW;

:: (state == YELLOW) -> state = RED;

:: (state == RED) -> state = GREEN;

od

}

Non-determinism can be avoided by making guards mutually
exclusive. Exit loops with break.
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Volatile Variables

var y , z ← 0, 0

p1: var x; q1: y ← 1;
p2: x ← y + z ; q2: z ← 2;

Question

What are the possible final values of x?

What about x = 2? Is that possible?
It is possible, as we cannot guarantee that the statement p2 is
executed atomically — that is, as one step.

Typically, we require that each statement only accesses (reads from
or writes to) at most one shared variable at a time. Otherwise, we
cannot guarantee that each statement is one atomic step. This is
called the limited critical reference restriction.
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Ensuring Atomicity

We will often have multiple actions that we wish to group into one
step, i.e. to execute atomically.

Example (Counters)

In our counter example, if each process executes the loop body
atomically the result number can be guaranteed.

In Promela we can simply state this requirement, but in real
programming languages we must use synchronisation techniques to
achieve this.

70



Linear Temporal Logic Promela Critical Sections

atomic and d step

Grouping statements in Promela with atomic prevents them from
being interrupted.

a1

a2

b1

b2

a1

a2

b1

atomic

If a statement in an atomic block is blocked, atomicity is
temporarily suspended and another process may run.
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atomic and d step

Grouping statements with d step is more efficient than atomic,
as it groups them all into one transition.

a1

a2

b1

b2

a1; a2 b1

d step

Non-determinism (if,do) is not allowed in d step. If a statement
in the block blocks, a runtime error is raised.
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Atomicity

In the Real World™, we don’t have the luxury of atomic and
d step blocks. To solve this for real systems, we need solutions to
the critical section problem.

A sketch of the problem can be outlined as follows:

forever do forever do
non-critical section non-critical section
pre-protocol pre-protocol
critical section critical section
post-protocol post-protocol

The non-critical section models the possibility that a process may
do something else. It can take any amount of time (even infinite).
Our task is to find a pre- and post-protocol such that certain
atomicity properties are satisfied.
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Desiderata
We want to ensure two main properties and two secondary ones:

Mutual Exclusion No two processes are in their critical
section at the same time.

Eventual Entry (or starvation-freedom) Once it enters its
pre-protocol, a process will eventually be able to execute its
critical section.

Absence of Deadlock The system will never reach a state
where no actions can be taken from any process.

Absence of Unneccessary Delay If only one process is
attempting to enter its critical section, it is not prevented
from doing so.

Question

Which is safety and which is liveness?
Eventual Entry is liveness, the rest are safety.
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First Attempt

We can implement await using primitive machine instructions or
OS syscalls, or even using a busy-waiting loop.

var turn← 1

forever do forever do
p1 non-critical section q1 non-critical section
p2 await turn = 1; q2 await turn = 2;
p3 critical section q3 critical section
p4 turn← 2 q4 turn← 1

Question

Mutual Exclusion?

Yup!
Other criteria? Nope! What if q1 never finishes?
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Second Attempt

var wantp,wantq ← False,False

forever do forever do
p1 non-critical section q1 non-critical section
p2 await wantq = False; q2 await wantp = False;
p3 wantp ← True; q3 wantq ← True;
p4 critical section q4 critical section
p7 wantp ← False q7 wantq ← False

Mutual exclusion is violated if they execute in lock-step (i.e.
p1q1p2q2p3q3 etc.)
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Third Attempt

var wantp,wantq ← False,False

forever do forever do
p1 non-critical section q1 non-critical section
p2 wantp ← True; q2 wantq ← True;
p3 await wantq = False; q3 await wantp = False;
p4 critical section q4 critical section
p7 wantp ← False q7 wantq ← False

Now we have a deadlock (or stuck state) if they proceed in lock
step.
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Fourth Attempt

var wantp,wantq ← False,False

forever do forever do
p1 non-critical section q1 non-critical section
p2 wantp ← True; q2 wantq ← True;
p3 while wantq do q3 while wantp do
p4 wantp ← False; q4 wantq ← False;
p5 wantp ← True q5 wantq ← True
p6 critical section q6 critical section
p7 wantp ← False q7 wantq ← False

We have replaced the deadlock with live lock (looping) if they
continuously proceed in lock-step.
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Fifth Attempt

var wantp,wantq ← False,False
var turn← 1

forever do forever do
p1 non-critical section q1 non-critical section
p2 wantp = True; q2 wantq = True;
p3 while wantq do q3 while wantp do
p4 if turn = 2 then q4 if turn = 1 then
p5 wantp ← False; q5 wantq ← False;
p6 await turn = 1; q6 await turn = 2;
p7 wantp ← True q7 wantq ← True
p8 critical section q8 critical section
p9 turn← 2 q9 turn← 1
p10 wantp ← False q10 wantq ← False
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Reviewing this attempt

The fifth attempt (Dekker’s algorithm) works well except if the
scheduler pathologically tries to run the loop at q3 · · · q7 when
turn = 2 over and over rather than run the process p (or vice
versa).
What would we need to assume to prevent this?

Fairness

The fairness assumption means that if a process can always make a
move, it will eventually be scheduled to make that move.

With this assumption, Dekker’s algorithm is correct.
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Expressing Fairness in LTL

Let enabled(π) and taken(π) be predicates true in a state iff an
action π is enabled, resp., taken.

Examples

Weak fairness for action π is then expressible as:

2(2enabled(π)⇒ 3taken(π))

Strong fairness for action π is then expressible as:

2(23enabled(π)⇒ 3taken(π))

Promela can assume weak fairness when checking models.
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What now?

Do the homework exercises and submit them before the Friday
lecture.

Assignment 0 (warm-up) will be out in W2. You have enough
knowledge to start it, but not yet enough to finish it.

Get spin (and ispin) working on your development
environment (or use VLAB/ssh)

98


	Linear Temporal Logic
	Promela
	Critical Sections
	


